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Defining laughter context for laughter synthesis
with spontaneous speech corpus

Tomohiro Nagata and Hiroki Mori

Abstract—In this paper, conversational laughter was synthesized by a statistical model-based speech synthesis framework using
spontaneous speech corpora. The phonetic transcriptions of natural laughter in these corpora were annotated, and the context
required to synthesize the laughter that accompanies speech sounds was defined from the perspective of the (1) phonetic properties of
the current segment, (2) phonetic properties of previous and succeeding segments, and (3) positional factors of the current segment or
laughter bout. Laughter was synthesized using the defined context and the framework of HMM-based speech synthesis.

To confirm the influence of the contextual factors on the naturalness of speech, a subjective evaluation was performed. As the result of
the evaluation, the naturalness of the entire utterance was improved by using the contextual factors defined in this study. This result
confirmed the importance of defining the appropriate context to synthesize natural conversational laughter.

Index Terms—Laughter, Spontaneous speech corpus, HMM-based speech synthesis

1 INTRODUCTION

N recent years, human-human and human-machine in-
Iteractions have attracted increasing interest. To ensure
that human-machine interactions resemble those between
humans, machine speech must express both linguistic infor-
mation and paralinguistic information such as the speaker’s
attitude, intentions, and emotions. To express such informa-
tion, a speech synthesizer must produce non-lexical sounds
in addition to speech sounds.

Laughing is a typical method of conveying non-verbal
information and has attracted research interest. Laughter
research has a long history and has been studied from
various perspectives, including generational, sociological,
and physiological ones [1]. In recent years, incorporating
laughter-based behavior into human-machine interaction
models has become a hot topic. For example, the ILHAIRE
project [2] researched the fundamentals and applications of
laughter, which include laughter detection, recognition and
synthesis [3]-[10].

Laughter is highly diverse. It has many forms, and
appears in various situations [11], [12]. Also, it has been
suggested that there is a gradual change from smiling to
“pure” laughter, i.e., speech-smile — speech-laugh — laugh-
ter, each of which has different acoustic characteristics and
communicative functions [13]-[16]. All of these phenomena
must be taken into consideration in order to make a ma-
chine laugh, which cannot be realized merely by replaying
recorded laughter sound. To cope with such diversity, a
flexible framework of laughter synthesis is essential.

However, laughter synthesis is still a developing field.
In [6] and [7], methods for synthesizing laughter vowels
using linear prediction were proposed, where the laughter
energy envelope was modeled via a mass-spring system. A
method of laughter vowel synthesis using formant synthesis
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to control the expressivity of laughter was developed in
[8]. In [9] and [10], a diphone concatenation-based laughter
synthesis method was proposed. Additionally, a method of
laughter synthesis was developed using a 3D model of the
vocal tract in [10].

In more recent studies, a method of laughter synthesis
via a hidden Markov model (HMM)-based approach was
proposed in [17] and [18]. In the method, the excitation and
spectral parameters of laughter are modeled via HMMs; the
differences in terms of the acoustic features are represented
by the context label. In [19], the acoustic features of laughter
were controlled via an arousal-driven method. In relation
to these “pure” laughter synthesis, it has been proposed
that speech-laughs be synthesized by replacing vowels of
the speech-smile model with vowels of the laughter model
[20], [21].

However, most corpus-based studies use induced laugh-
ter rather than that in conversational scenes, even though
the synthesized laughter can be used in human-machine
communication. Laughter in conversation occasionally ac-
companies speech sounds. It has been reported that even
if the naturalness of the laughter itself is high, the overall
naturalness of an utterance is reduced when it is connected
with speech sounds [9]. In [10], laughter synthesized by di-
phone concatenative synthesis was perceived as unnatural.
To properly synthesize laughter in conversational scenes,
the laughter model needs to consider the context in which
laughter is placed.

In this study, we focus on the statistical paramet-
ric speech synthesis framework. In this framework, the
prosodic and segmental features of phonemes that vary due
to various factors are expressed as the context [23]. Unlike
simple concatenative methods, this method can robustly
model the acoustic properties of segments, which can be
explained by a combination of contextual factors. Thus,
laughter that is suitable for a situation can be synthesized
using the statistical parametric framework if we can define
a proper laughter context.
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In the HMM-based laughter synthesis mentioned above
[17], [18], the datasets used were not laughs from communi-
cation scenes but ones collected by emotion induction using
joke videos. The authors believe that no previous work has
attempted to synthesize laughter in conversation using a
spontaneous dialog speech corpus as a dataset.

The goal of this study is to synthesize natural laughter
in conversational scenes. To achieve this, we need to collect
natural laughter in spontaneous conversations rather than
artificially induced laughter.

To properly model laughter in conversation, we need to
identify effective contextual factors. Urbain et al. investi-
gated the effect of contextual information on the naturalness
of synthesized laughter [18]. They tried to add “an extended
context including the information available thanks to the
syllabic annotation (e.g., position of the phone in the sylla-
ble, position of the syllable in the word, etc.)” [18] to simple
phone information, but failed to prove the effectiveness of
the extended context information. In the following papers
to [18], contextual factors are basically same [19], [22]. So
far, no previous work has further explored the contextual
factors for HMM-based laughter synthesis. Hence, the main
contribution of this study is to clarify the contextual factors
required for laughter synthesis with spontaneous dialog
speech. We define a relatively simple laughter context as
the first step.

In this paper, the natural laughter that accompanies
speech is synthesized with spontaneous speech corpora
using the HMM-based speech synthesis framework and this
newly defined context. The corpora used in this study is
described in Section 2. Section 3 shows the laughter an-
notation method, and some statistics of laughter annotated
for the corpora. In section 4, the context for laughter in a
conversation is defined; the laughs are synthesized based on
the context using the HMM-based speech synthesis frame-
work. In this study, the position of laughter in an utterance
that includes speech sounds (a relative position with speech
sounds) was defined, as was the basic context (e.g. phonetic
transcription, position of the syllable, etc. [17], [18]). In
section 5, the effectiveness of the newly defined context is
investigated via a subjective evaluation of naturalness.

2 DIALOG SPEECH CORPUS

Laughter in dialog may play a social role; thus, it is nec-
essary to consider what factors are different from laughter
alone. For example, laughter overlaps more frequently in
conversation than with speech sounds [24]. In fact, over-
lapping laughter has a different acoustic form than non-
overlapping laughter does [25]. Thus, because there may be
a difference in acoustic features between laughter sounds
in conversation and induced laughter, it may not be ap-
propriate to exclusively use induced laughter to synthesize
laughter in conversation. Therefore, we focus on laughter
included in spontaneous dialog speech corpora for laughter
synthesis. In this study, the Utsunomiya University Spoken
Dialogue Database for Paralinguistic Information Studies
(UU Database) [26] and the Online Gaming Voice chat
Corpus (OGVC) [27] were used.

TABLE 1
The number of laughs in the UU Database.

Speaker Num Speaker Num Speaker Num

FJK 8 FKC 22 FMS 16
FMT 34 FNN 14 FSA 26
FSH 17 FTH 5 FTS 40
FTY 19 FUE 14 FYH 23
MKK 22 MKO 20
TABLE 2

The number of laughs in the OGVC.

Speaker Num Speaker Num Speaker Num
01. MMK 26 03_FMA 74 05_MYH 52
01_MAD 118 03_FTY 41 O05_MKK 87
02_MFM 142 04_MNN 154 O06_FTY 251

02_MEM 145 04 _MSY 246 06_FWA 175

2.1 UU Database

The UU Database is a speech corpus for studying linguistic
and phonetic phenomena in expressive spoken dialog. The
database consists of natural dialog spoken by seven pairs of
college students (12 female speakers and 2 male speakers).
The task of the dialogs is “four-frame cartoon sorting.”
Thanks to the amusing nature of the task, the database
is characterized by a wide variety of recorded expressive
dialog speech. The total number of utterances is 4840.

The speech recorded in the UU Database is annotated
with the labels of non-verbal sounds such as laughter,
inhalation, and coughing. The total number of laughs is 280.
The number of laughs by each speaker is shown in Tab. 1.

22 0OGvC

The OGVC is an emotional speech corpus that can compare
spontaneous speech and acted speech. In this paper, sponta-
neous speech is exclusively used. The voice chat during the
online game was recorded as spontaneous speech. In total,
9114 spontaneous utterances were recorded by 13 speakers
(4 female speakers and 9 male speakers).

In the OGVC, the location of the laughter is annotated
in the transcription. The total number of laughs is 1593. The
number of laughs by each speaker is shown in Tab. 2.

3 SEGMENTATION OF LAUGHTER

Laughter is difficult to identify. In particular, the distinc-
tion between pure “laughter” and “speech-laugh” [14] is
important for corpus annotation. We define “laughters” in
this paper as laughing sounds that do not overlap speech,
as opposed to “speech-laughs”, which overlap speech. We
shall exclude speech-laughs from the scope of the current
study, though the distinction is not straightforward both in
theory and practice. We shall avoid the difficulty by relying
on the laughter labels provided by the target corpora, the
UU Database and the OGVC. In both corpora, the annotated
laughters (shown in Tables 1 and 2) do not include speech-
laughs, according to the user manuals.
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Fig. 1. The hierarchical structure of laughter (adapted from [28]).

The structure of laughter is hierarchical, and its hierarchy
is roughly divided into the segmental level, the syllabic level
and the phrasal level [28]. Fig. 1 shows the structure of
laughter. At the segmental level, laughter is split into conso-
nants and vowels. Here, “vowel” and “consonant” denote
sound-pause alternations; therefore, they have a different
meanings from a phonetic perspective [28]. At the syllabic
level, laughter is segmented into syllable (calls), which con-
sist of the initial and final consonants and a vowel. At the
phrasal level, laughter is segmented into phrase (bouts) con-
sisting of some calls. Additionally, multiple phrases establish
the sentence level (i.e., the laughter episode).

In this study, each laughter episode is segmented into
bouts and calls.

3.1
3.1.1 Phrasal and sentence level

Description of laughter in this study

Laughter episodes can be composed of several bouts sep-
arated by inhalation. In this study, a laughter episode is
represented by a “{laugh}.” First, the laughing part of
an utterance is segmented by the laughter episode. Next,
the laughter episode is segmented by bouts and inhalation,
which are denoted as “b” and “h”, respectively.

3.1.2 Syllabic level

In the AVLaughterCycle Database [29], which was built for
automatic laughter processing (i.e., HMM-based laughter
synthesis [17], [18]), a detailed description of laughter is pro-
vided, e.g., a transcription using the International Phonetic
Alphabet (IPA). Although such descriptions are consid-
ered useful for high-quality laughter synthesis, professional
knowledge and long observation times are required. This is
a major barrier when transcribing large-scale speech corpus
or voice resources. Therefore, as a simplified method, calls
are described using kana (Japanese syllabic characters) in
this study. The description is transcribed once via kana, and
then it is converted to phoneme sequences. For example,
laughter “0 0 O ” is described as [hahaha].

It is impossible to express differences between sounds
due to phenomena such as unvoicedness, nasalization and
prolongation by using only the phoneme symbols. To enable
such descriptions, a set of auxiliary symbols, as shown in
Fig. 2, was defined.

Unvoiced
Nasalized

Prolonged

Fig. 2. Auxiliary symbols.

3.2 Annotation of laughter transcription

Laughter was annotated using the description system de-
fined in Sect. 3.1. The annotator was the first author and
Praat [30] was used for the annotation. For this annotation,
the target speakers were limited to females because the
HMM synthesis requires that the training data have as
similar voice quality as possible in order to train stable
models.

The annotation of laughter of speaker FIS in the UU
Database and speakers 03_FTY, 06_FTY and 06_FWA in
the OGVC was completed. Since the purpose of this study
is to synthesize laughter accompanied by speech sounds,
isolated laughter (i.e. there are no speech sounds just before
or just after the laugh) was excluded from the scope of the
annotation.

3.3 Annotation results

An actual example of annotated laughter is shown in Fig. 3.
Laughter episodes and the transcription of speech sounds
are described as layers 0. This example is an utterance
containing a laughter episode. In layer O, the structure of a
laughter episode is described. The laughter episode consists
of a bout and an inhalation. In layer O , the structure of a bout
is described using calls. The phonetic notation is extended
by auxiliary symbols used to describe calls.

A histogram of the vowels in calls is shown in Fig. 4.
For vowels in call, /a/, /u/ and /e/ were dominant. The
vowels /i/ and /o/ were rare, and some speakers did not
produce them at all.

The most frequent vowel was /u/, and there are few
calls consisting only of vowels. This is shown in Fig. 5. Black
and gray bars indicate the number of calls containing only
vowels and the first calls containing only vowels, respec-
tively. In contrast, the vowels /a/ and /e/ had relatively
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Fig. 5. The number of calls in terms of vowels only.

more calls consisting only of vowels. Moreover, most of the
calls tended to appear at the initial position of the bout.

Fig. 6 illustrates the breakdown of the bout’s structure.
Bouts consisting of only one call, i.e., single-call bouts, ac-
counted for 17% of the total, and unvoiced bouts accounted
for 35%. In contrast, there were few multi-call bouts where
all of the calls were unvoiced. This is the same trend as in
[31]. Additionally, the distribution of the voicedness of calls
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Fig. 6. The breakdown of bout’s voiced/unvoiced structure.
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Fig. 7. The number of voiced/unvoiced call.

is illustrated in Fig. 7. These results confirm that the number
of unvoiced calls is small.

4 LAUGHTER SYNTHESIS MODEL
4.1 Definition of context

Various kinds of contexts (dialog acts [32], functions as
a response token [33], interpersonal stance [34], etc.) may
affect the acoustical properties of laughter sounds. In this
study, we defined similar contexts that are used in TTS
systems as a first step.

The context defined in this study is shown in Tab. 3.
To express the difference in sounds characterized by the
vocal tract configuration and phonation, the transcription of
current calls was included. Here, the syllabic characters de-
scribed in Sect. 3.1 were used. Voiced /unvoiced, oral /nasal
and prolonged sounds were clearly distinguished via auxil-
iary symbols.
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TABLE 3
Defined context for laughter

cc : The transcription of current calls

¢; : The transcription of preceding segment
¢, : The transcription of succeeding segment
p1 : The laughter position for an utterance
Dc : The call position for a bout B
n. : The number of call for a bout

A

TABLE 4
The training condition for the laughter model

Model 5 states left-to-right HSMM

0-39th mel-cepstral coefficient,

logarithmic fundamental frequency,
A, AA

Feature vector

Speech signals were sampled at a rate
of 16 kHz and windowed by a 25 ms
Hamming window with a 5 ms shift

Analysis

Two contexts were added as well. Context A includes
the transcription of the preceding and succeeding segments
to consider the influence of the difference between preced-
ing and succeeding sounds. Here, “segments” are either
phonemes (for speech sound) or calls (for laughter).

Context B includes contextual factors that have more
global information. The laughter location in an utterance
was added to consider whether the laughter is placed at
the beginning, middle, or end of an utterance. The distribu-
tion of call duration is dependent on the call position [11].
Therefore, the call position was also added to the context.
The number of calls in a bout was included, similar to the
number of morae in an accentual phrase, which is often used
in HMM-based speech synthesis.

4.2 HMM-based laughter synthesis

The laughter of speakers FIS, 06_FTY and 06_FWA was
used for model training. The laughs of speaker 03_FTY were
discarded because the amplitude levels of some recorded
sounds were too small. The total amount of training data
was 109 bouts. The HMM-based speech synthesis system
(HTS, version 2.2) [35] was used for the model training
and laughter synthesis. The speech analysis conditions and
training model are shown in Tab. 4. Here, the number
of states for HSMMs was determined by seeking from
the range of 5-10 by assessing the quality of synthesized
laughter; we used 5. The model was trained via the Speaker
Adaptive Training technique using a shared decision tree
[36]. When constructing the tree, questions about contextual
factors in Tab. 3 were applied, and the nodes were split with
the maximum likelihood criterion.

The test laughter was synthesized with the model that
was trained using all of the training data except the test
laughter itself (leave-one-out method). Therefore, the num-
ber of synthesized laughs is 109 bouts. Each laughter was
synthesized adaptively to fit the model of the original
speaker and of her laughter.

hy

5000 5000

N N
£ ==
> >
Q Q
= =
3 El
o o
o] 5]
- -
= i3
0 0

0.1983

Time [s] Time [s]

(a) natural single-call bout (b) synthesized single-call bout

Fig. 8. Example of single-call bout.

4.3 Results of synthesized laughter

As an example of a single-call bout, the waveform and
spectrum of laughter [hu] are shown in Fig. 8. Laughter [hu]
is a fricative sound without vocal fold vibration, as shown
in Fig. 8 (a), and it is a typically a single-call bout in a daily
conversation scene such as giggles or self-derision. Fig. 8 (b)
shows the waveform and spectrum of the synthesized single-
call bout, from which it can be confirmed that the synthesized
[hu] is similar to the turbulence of natural laughter.
Similarly, the waveform and spectrum of laughter
[huhuhu] are shown in Fig. 9 as an example of a multi-
call bout. From Fig. 9 (b), it can be confirmed that the
natural multi-call bout’s tendency in which the call amplitude
gradually decreases is reflected in the synthesized laughter.

5 NATURALNESS EVALUATION

In this section, the overall naturalness of laughter accompa-
nying the speech sounds is evaluated.

To evaluate the overall naturalness, synthesized laughter
was connected to the speech sounds. Furthermore, to con-
firm the effectiveness of considering the laughter context,
synthesized laughter considering the context was compared
to the laughter synthesized without context.

5.1 Stimulus
The conditions for synthesizing laughter were as follows:

o baseline (BL)
The laughter was synthesized using the context label
considering only current calls.

e Dbaseline plus context A (BL+A)
The laughter was synthesized using the context label
considering the preceding and following segments.

e baseline plus context A and B (BL+AB)
The laughter was synthesized using the context that
considers more global contextual factors in addition
to context A.
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Fig. 9. Example of multi-call bout.

¢ analysis-synthesis (RESYN)
The laughter was re-synthesized from natural laugh-
ter in the test utterance via the analysis-synthesis.

The speech sounds were connected to the laughter syn-
thesized under these conditions. The speech sounds were re-
synthesized via analysis-synthesis, to avoid the influence of
the quality of the speech part on the naturalness evaluation
of the laughter part. The number of stimuli was 45 for each
condition.

5.2 Experimental conditions

The stimuli for the experiments were created under four
conditions. Hence, the number of stimuli was 4 (conditions)
x 45 (test utterances) = 180. The number of single-call bout
and multi-call bout are 9 and 36, respectively. The number of
call of multi-call bouts is distributed within a range of 2 to 5.
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Fig. 10. The distribution of the naturalness score.

Seventeen undergraduate male students and two under-
graduate female students from Utsunomiya University, all
of whom were Japanese native speakers and had no special
knowledge about speech science, voluntarily participated
in the experiment. The evaluation was performed via a
web-based interface. The birthplace of the subjects was
distributed over a wide area of Japan. The subjects eval-
uated the naturalness of each stimulus on a 5-point scale:
“1: unnatural,” “2: somewhat unnatural,” “3: neither (“0O O
Oooogogog”),” “4: somewhat natural,” and “5: natural.”
Naturalness was defined as “the degree of matching of
segmental /prosodic features of speech and laughter parts.”
This also considers the degree of discordancy of paralin-
guistic information perceived from the speech or laughter
parts.

Subjects were asked to listen to the stimuli using head-
phones in a quiet room. They were instructed to listen to
each stimulus only once.

5.3 Results

As a result of the naturalness evaluation, the distribution of
mean opinion score (MOS) is shown in Fig. 10. The boxplot
represents the mean opinion score averaged over all test
utterances. The averaged mean opinion score of BL, BL+A,
BL+AB and RESYN is 2.10, 2.32, 3.01 and 4.13, respectively.
A one-way ANOVA test revealed a significant main effect of
the synthesized conditions (F'(3,176) = 220.8,p < .01). The
result of multiple comparison by Tukey’s HSD test revealed
a significant difference between RESYN and other condi-
tions (p < .01) and between BL+AB and other conditions
(p < .01). These results confirmed that the overall natural-
ness was improved by defining the context that has more
global information, such as the laughter and call position.
Distributions of averaged MOS for each laughter struc-
ture are shown in Fig. 11. The averaged MOS of single-call
bouts and multi-call bouts was 3.15 and 2.82, respectively. A
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Times [s]
t-test revealed a significant effect of the laughter structure (a) Synthesized with BL
(t(58.4) = —2.14,p < .05). This result implies the possibil-
ity that the structure of laughter affected the naturalness.
However, there is also a possibility that the different speech
sounds that were connected to the synthesized laughter
affected the naturalness. In order to assess the structural
effect on the naturalness in more detail, it will be necessary
to carefully control the sentences to be connected.

An example of naturalness improvement is shown in
Fig. 12. The figure shows the waveform and spectrum of
an utterance with laughter. The gray part of the waveform
represents the speech sounds, and the black part represents
the laughter. Fig. 12 (a) is the synthesized laughter without
considering the context. Synthesized laughter is perceived
as very unnatural because all calls have the same acoustic
features. Fig. 12 (b) is synthesized laughter that consid-
ers the preceding and succeeding segments. The acoustic
feature of the first call is different from the others, and
the naturalness is somewhat improved. Fig. 12 (c) is the Times [s]
synthesized laughter that considers more global contextual (b) Synthesized with BL+A
factors. Different acoustic features are generated depending
on the call position and sound like human laughter. From
this, we determined that the call position contributes greatly
to improving the naturalness.

There were also a few utterances for which the natural-
ness was not improved, even by using the extended context.
These are utterances where the naturalness of the laughter
itself is low. An example of poorly synthesized laughter
is shown in Fig. 13. In this example, [hu] has the same
acoustic features that are repeatedly being synthesized. Such
monotonous repetition of the same sound causes the degra-
dation of naturalness, known as the “machine gun effect.”
A possible cause of such a phenomenon is the sparseness
of the training data. We observed that some nodes stopped
growing at an early stage of the decision tree-based context
clustering during the model construction. A potential solu-
tion is to add more fine-grained context that describes the
position of the calls or to increase the training data.

hu hu hu

W
(=3
(=3
=

Frequency [Hz]

hu hu hu

W
(=3
(=3
S

Frequency [Hz]

Times [s]
(c) Synthesized with BL+AB

6 CONCLUSIONS

In this Paper, conversational laughter, Wthh ’prlcally.ac.- Fig. 12. Example that the naturalness of entire speech was increased.
companies speech sounds, was synthesized via a statisti-

cal model-based speech synthesis framework using spon-
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Fig. 13. Example of low naturalness.

taneous speech corpora. To prepare the training data,
the transcription of calls was annotated for laughter with
speech sounds in two spontaneous speech corpora: the UU
Database and OGVC. In terms of contextual factors, the
transcription of the preceding and succeeding segments,
the call position, the number of calls and the bout position
were defined. Laughter was synthesized using the defined
context and the framework of HMM-based speech synthe-
sis. The synthesized laughter exhibited acoustic features
resembling natural laughter.

To confirm the influence of the contextual factors on
naturalness, a subjective evaluation was performed. The
naturalness was evaluated for utterances that include both
speech sound and laughter. The naturalness of the entire
utterance was improved by using the defined contextual
factors in this study. From this, we concluded that it is neces-
sary to use the appropriate contextual factors to synthesize
natural conversational laughter.

This study was conducted as a first step in laughter
synthesis that considers the context of natural conversa-
tion. Its effectiveness was confirmed under very limited
conditions. As future tasks, it is necessary to consider the
gender difference of laughter, to improve the naturalness by
increasing the annotated training data, and to define further
contextual factors. Additionally, paralinguistic information
perceived from laughter was not evaluated in this study.
Because laughing is a medium of conveying the speaker’s
emotional and mental states, paralinguistic information per-
ceived from laughter may play an important role in commu-
nication. Therefore, future tasks should include examining
the influence of laughter on perceived paralinguistic infor-
mation and the context required to control paralinguistic
information.
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